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Non-local ans̈atze for nonlinear heat and wave equations
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Street 3, 252004 Kyiv, Ukraina

Received 29 July 1996

Abstract. New ans̈atze reducing nonlinear heat and wave equations to a system of ordinary
differential equations are proposed. These ansätze can be constructed with the help of symmetry
operators of the system corresponding to the equation under study. Exact solutions of the
considered equations are obtained. The link between the Bäcklund transformations for a given
equation and the conditional symmetry of the corresponding system is discussed.

The papers [1, 2] are devoted to construction of exact solutions of nonlinear differential
equations by using the ansatz

u = F(x, ϕ(ω)) ω = ω(x) (1)

which reduces partial differential equations to equations with a smaller number of
independent variables (for more details of the reduction of partial differential equations see
also [3, 6, 8–15]. By means of (1), exact solutions of many linear and nonlinear mathematical
physics equations have been found (see [3] and references therein). It is well known that
the classical Lie method of infinitesimal transformations, the non-classical method [8], the
method of conditional symmetries [3, 15], and the direct method [11] allow us to construct
the ansatz of type (1) for a dependent variableu.

The technique for constructing the ansatz for the derivativesuxi

∂u

∂xi
= Ri(x, u, ϕ1(ω), . . . , ϕn(ω)) ω = ω(x, u) i = 1, 2, . . . , n (2)

is discussed which reduces partial differential equations to the system of equations for
ϕ1,. . . ,ϕn with a smaller number of independent variables. We consider (2) as a non-local
ansatz foru because determination of an explicit solution of considered equation requires
integration of a system of differential equations (2). It is obvious that the compatibility
condition

∂Rk

∂xl
= ∂Rl

∂xk

has to be satisfied in this case. To findR0 andRk we use the idea proposed in [4]. The
essence of this idea is to replace the second-order partial differential equation for a scalar
function by a system of two first-order equations and then study the symmetry of this
system. Indeed, in this way a new invariance algebra of the system, which is equivalent
to the Klein–Gordon–Fock equation has been constructed in [4]. An analogous idea was
applied by Bluman and Kumei to investigation of the symmetry of the wave equation [9, 10].
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It should be noted that in the general case the symmetry group of the corresponding
system contains the symmetry group of the initial equation as a subgroup. With the help
of the extended operators of point symmetry admitted by the considered equation we can
construct ans̈atze of type (2), but they lead to the solutions of the given equation which can
be obtained as invariant solutions of its point symmetry. Thus, to obtain new solutions it is
necessary to use the operators of the classical point symmetry of the corresponding system
which are not the extended operators of point symmetries admitted by the original equation
as well as the operators of the conditional symmetry of the system.

One can consider this approach as a group method for construction of differential
constraints [13, 16, 17], which are necessarily compatible, provided that the non-trivial
solutions of the reduced system exist.

In [18] Galaktionov proposed the method of nonlinear separation to find the solutions
to nonlinear diffusion equations. We show that the Galaktionov’s ansatz can sometimes be
obtained within the framework of this approach.

Another important application of this technique is its use in the construction of
the B̈acklund transformations of partial differential equations. We briefly discuss the
relationship between the conditional symmetry of the corresponding system and the
Bäcklund transformations of the original equation.

As to the main ideas of the suggested approach, the present paper is close to [7].

(1) Let us consider the nonlinear equation

ut = F(uxx) (3)

whereF(uxx) is a smooth function of its argument. This equation and the nonlinear heat
equation

wt − (c(w)wx)x = 0 (4)

wherec(w) = dF(w)/dw are linked by the transformationw = uxx . According to [4, 5],
the following system

v1
2 + v1

3v
2 = v2

1 + v2
3v

1 (5)

v2
2 + v2

3v
2 = 8(v1) (6)

corresponds to equation (3), wheret ≡ x1, x ≡ x2, u ≡ x3, ∂u/∂t ≡ v1, ∂u/∂x ≡ v2,
vik ≡ ∂vi/∂xk, and8(v1) = F−1(v1).

In the general case,v1 andv2 are functions of variablesx1, x2, x3 and system (5) and
(6) is not equivalent to equation (3). Nevertheless, it is invariant with respect to the group
admitted by (3). Let us consider the operator

X = ξ1∂x1 + ξ2∂x2 + ξ3∂x3 + η1∂v1 + η2∂v2 (7)

whereξ i and ηk, i = 1, 2, 3, k = 1, 2, are functions ofx1, x2, x3, v
1, v2. It turns out that

the invariance condition for equation (5)

X
1
(v1

2 + v1
3v

2 = v2
1 + v2

3v
1)|v1

2+v1
3v

2=v2
1+v2

3v
1 ≡ 0 (8)

whereX
1

denotes the first extension of the infinitesimal operatorX, is equivalent to the

requirement of the invariance of the contact condition under group transformations and
leads to the representations forη1 and η2 which are identical to the classic formulae for
the extended infinitesimalsηut andηux arising in the theory of prolongation [3, 10, 12, 14].
Requiring equation (6) to admit the operatorX, and taking into account the fact thatx1 ≡ t ,
x2 ≡ x, x3 ≡ u, v1 ≡ ∂u/∂t , v2 ≡ ∂u/∂x we obtain the Lie algebra which is the same
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as the algebra of infinitesimal operators of the first extended symmetry group of the initial
equation (3).

If we study the symmetry properties of system (5) and (6) then (8) is changed and takes
the form

X
1
(v1

2 + v1
3v

2 = v2
1 + v2

3v
1)| v1

2+v1
3v

2=v2
1+v2

3v
1

v2
2+v2

3v
2=8(v1)

≡ 0. (9)

This means that condition (8) has to be satisfied not in all(x1, x2, x3, v
k, vlm)-space but only

on the manifold given by (6). It is obvious that condition (9) is weaker than condition (8).
Hence there is the possibility of expansion of the class of symmetry operators.

Suppose system (5) and (6) admits a one-parameter group of transformations with
infinitesimal generator of the form (7). Letωi(x1, x2, x3, v

1, v2), where i = 1, 2, 3, 4,
be functionally independent invariants of (7) satisfying

Xωi = 0

and rank[∂ωl/∂vk] = 2, wherek = 1, 2, l = 3, 4. Then we can construct the ansatz

ω3 = ϕ1(ω1, ω2) ω4 = ϕ2(ω1, ω2) (10)

reducing system (5) and (6) to the system of two partial differential equations forϕ1 and
ϕ2 with two independent variablesω1 andω2,

L1(ω1, ω2, ϕ
1, ϕ1, ϕ1

ω1
, ϕ1

ω2
, ϕ2

ω1
, ϕ2

ω2
) = 0

L2(ω1, ω2, ϕ
1, ϕ1, ϕ1

ω1
, ϕ1

ω2
, ϕ2

ω1
, ϕ2

ω2
) = 0 (11)

whereL1 andL2 are some functions of their arguments. In general, this system is equivalent
to the initial equation (3). One can construct the solutionu(t, x) of the initial equation from
the solutionϕ1(ω1, ω2) andϕ2(ω1, ω2) of (11) by integrating the following system:

ω3(t, x, u, ut , ux) = ϕ1(ω1(t, x, u, ut , ux), ω2(t, x, u, ut , ux))

ω4(t, x, u, ut , ux) = ϕ2(ω1(t, x, u, ut , ux), ω3(t, x, u, ut , ux)). (12)

Studying the symmetry of the reduced system (11) we can obtain the additional symmetry
operators. These operators are used to reduce (11) to a system of ordinary differential
equations. In a similar way we find the solutions of the original equation from the solutions
ϕ1(ω1) andϕ2(ω1) of the ordinary differential equations (see above (12)).

It should be emphasized that the extended operators of conditional symmetry admitted
by (3) generate the ansätze which do not reduce this equation. Therefore, we use the
operators of conditional symmetry admitted by system (5) and (6) (see below (2), (3) and
(6)).

Note that using one symmetry operator we construct the ansatz which reduces (5)
and (6) to the system of partial differential equations with two independent variables. In
particular, whenξ1 = ξ2 = 0 in (7) we obtain the reduced system for functionsϕ1(t, x)

and ϕ2(t, x) depending on two variablest and x. In this case the ansatz can be used
for constructing a B̈acklund transformation for the original equation (see below (6)). A
two-dimensional algebra{Q1,Q2} which corresponds to the two-parameter group having
three independent invariants leads to the system of ordinary differential equations. Thus the
number of independent variables of the reduced system obtained from (5) and (6) equals
k− 2, wherek is the number of functionally independent invariants of the Lie group being
used for construction of the ansätze.

Taking into account the invariance of equation (3) with respect to the translation group
u′ = u+ a, wherea is a parameter, we can reduce (5) and (6) to the system

v1
2 = v2

1 v2
2 = 8(v1). (13)
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Then the following theorem can be proved with the help of the Lie algorithm [3, 10, 12, 14].

Theorem 1. The system (13) is invariant with respect to the algebra with basis elements

P1 = ∂x1 P2 = ∂x2 P3 = ∂v2

D = 2x1∂x1 + x2∂x2 + v2∂v2 (14)

Q = −x1∂x1 + v2∂x2 + v1∂v1 (15)

if F = 1/ ln v1.

The operatorsP1, P2, P3, andD correspond to generators of point transformations andQ

corresponds to the operator

K = −t∂t + ux∂x + 1
2u

2
x∂u + ut∂ut (16)

which is the generator of the contact transformations of the equation

ut = exp(1/uxx). (17)

The finite transformations corresponding to the infinitesimal operator (16) are given by the
formulae

t̃ = t exp(−a) x̃ = x + aux ũ = u+ 1
2au

2
x ũt = exp(a)ut . (18)

Under these transformationsuxx is transformed as follows:

ũxx = uxx

1+ auxx . (19)

Using (18) we can generate new solutions of equation (17) from known ones. Let
u = f (t, x) be a solution of equation (17). Thus, the solution of the first-order differential
equation

u+ 1
2au

2
x = f (exp(−a)t, x + aux) (20)

which does not satisfy the equation

1+ auxx = 0 (21)

will be a solution of equation (17). Indeed, if the solution to be found satisfies equation
(21) the change of variables (18) and (19) is singular. For example, we take the solution

u = 1
2x

2+ et. (22)

By applying the transformations (18) whena = 2 we obtain the equation

u = 1
2x

2+ 2xux + u2
x + e−1t. (23)

The general solution of equation (23) is given by formulae

u = − 1
4x

2+ e−1t + c2(t)± xc(t) (24)

wherec is arbitrary function oft , and

u = − 1
2x

2+ e−1t. (25)

The functionu defined by (25) satisfies equation (17) and solution (24) satisfies equation
(21), whena = 2 but does not satisfy equation (17). Thus, not every solution of equation
(17) is transformed into another solution of this equation by finite transformations (18).
This situation appears to be common in the case of contact transformations.

Nevertheless, we can use the operatorQ to construct the ansatz reducing equation (17)
to the system of two ordinary differential equations by applying the classic method of
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construction of invariant solutions [3, 10, 12, 14]. Thus, it is necessary to solve the invariant
surface conditions

−x1
∂v1

∂x1
+ v2∂v

1

∂x2
= v1 − x1

∂v2

∂x1
+ v2∂v

2

∂x2
= 0. (26)

By solving the corresponding characteristic equations

dx1

−x1
= dx2

v2
= dv1

v1

we obtain three independent invariants

ω1 = v1x1 ω2 = ln x1+ x2

v2
ω3 = v2.

Then the solution of (26) is given implicitly by the invariant forms

v1x1 = ϕ1(v
2) ln x1+ x2

v2
= ϕ2(v

2) (27)

whereϕ1 andϕ2 are arbitrary functions ofv2. From (27) we easily obtain the ansatz

v1 = ϕ1(v
2)

x1
v2 = x2

(ϕ2(v2)− ln x1)
(28)

corresponding to the operatorQ.
Substituting (28) into (13) we obtain the system of ordinary differential equations

lnϕ1− ϕ2 = v2 dϕ2

dv2

dϕ1

dv2
= v2. (29)

The general solution of system (29) has the form

ϕ1 = 1
2((v

2)
2+ C)

ϕ2 = ln
((v2)

2+ C)
2e2

+ C1

v2
+ 2C

v2

∫
dv2

(v2)2+ C .

Thus we obtain the system

ut = (ux)
2+ C
2t

ux = 2x

ln[((ux)2+ C)/2te2] + (C1/ux)+ (2
√
C/ux) arctan(ux/

√
C)

(30)

whenC > 0 ande is the Euler number

ut = (ux)
2+ C
2t

ux = 2x

ln[((ux)2+ C)/2te2] + (C1/ux)+ (
√−C/ux) ln[(ux −

√−C)/(ux +
√−C)] (31)

whenC < 0. To construct the solution of equation (17) it is necessary to integrate system
(30) or (31). However, using the link between (3) and (4) it is easy to obtain the solution
of equation (4) withc(w) = −w−2 exp(1/w) in the form

exp

(
1

w

)
= (θ)2+ C

2t
(32)

θ = 2x

ln[((θ)2+ C)/2te2] + (C1/θ)+ (2
√
C/θ) arctan(θ/

√
C)

(33)
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whenC > 0 and

exp

(
1

w

)
= (θ)2+ C

2t
(34)

θ = 2x

ln[((θ)2+ C)/2te2)+ (C1/θ)+ (
√−C/θ) ln[(θ −√−C)/(θ +√−C)] (35)

whereC < 0, respectively. Thus, (32) and (34) give two families of solutions for the
nonlinear heat equation (4). In a similar way we can construct exact solutions of (4), where
c(w) = 1/r(w − 1)(1/r)−1/w(1/r)+1, r ∈ R and alsor 6= 0,±1.

It should be noted that using the ansätze of type (28) generated by some operators
from (14), we obtain the solutions of equation (3) which are invariant with respect to the
one-parameter group whose infinitesimal operator isα1∂t + α2∂x + α3∂u + d(2t∂t + x∂x +
2u∂u)+β1x∂u, whereα1, α2, α3, d, β1 are some constants. With the help of operatorQ one
can construct solutions which are not invariant with respect to any one-parameter subgroup
of the point transformations group admitted by equation (3).

(2) Now we consider the nonlinear wave equation

ux1x2 = F(u, ux1, ux2). (36)

The corresponding system is

v1
2 + v1

3v
2 = F(x3, v

1, v2) v2
1 + v2

3v
1 = F(x3, v

1, v2) (37)

whereux1 ≡ v1 andux2 ≡ v2.
Here we use the following definition of the conditional invariance [3, 15]. Let us

consider the system ofkth-order differential equations

L(x, ui, u
1

i , . . . , u
k

i) = 0 (38)

wherex = (x1, . . . , xn) denotesn independent variables,ui denotes the dependent variables
where i = 1, 2, . . . , m, u

k

i denotes the set of allkth-order partial derivatives ofui with

respect tox, and the infinitesimal operators

QA = ξ lA∂xl + ηkA∂uk A = 1, 2, . . . , N (39)

forming a Lie algebra. (Summation under the repeated indices is understood.)

Definition 1. We shall say that system (38) isQ-conditionally invariant with respect to the
operatorsQA from (39) if the following condition is fulfilled

QA
k

L

∣∣∣∣
L=0
QAu

i=0

≡ 0 (40)

whereQAu
i = 0 is a set of equations

QAu
i = 0 DQAu

i = 0 . . . DpQAu
i = 0

QAu
i = ξ lA∂ui/∂xl − ηiA, D is the operator of total differentiation, andp is integer.

Defintition 2. System (38) is said to be conditionally invariant under the operatorsQ from
(39), if there exist supplementary conditions on the solutions of (38) of the form

L1(x, u
i, u

1

i , . . . , u
k

i) = 0 (41)

such that (38) together with (41) areQ-conditionally invariant underQA.

Then the following theorem can be proved.
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Theorem 2. The system (37) isQ-conditionally invariant under the operators

Q1 = ∂x1

Q2 = ∂x3 + ∂v1 + F1(v
1− x3)∂v2 (42)

whereF1 is a smooth function, ifF = v1F1(v
1− x3).

The correctness of theorem is easily verified with the help of theQ-conditional invariance
criterion (40) [3, 15]. Note thatQ2 is not a prolongated Lie operator. The operators (42)
lead to the ansatz

ux1 = u+ ϕ1(x2) ux2 = F1(ϕ1(x2))u+ ϕ2(x2)

reducing (37) to the equation

ϕ2(x2)+ ϕ′1(x2) = ϕ1(x2)F1(ϕ1(x2)).

Having integrated the system

ux1 = u+ ϕ1(x2) ux2 = F1(ϕ1(x2))u+ ϕ1(x2)F1(ϕ1(x2))− ϕ′1(x2)

one can obtain an exact solution of the wave equation

ux1x2 = ux1F1(ux1 − u)
in the form

u = −ϕ1(x2)+ C exp

(
x1+

∫
F1(ϕ1(x2)) dx2

)
whereϕ1(x2) is arbitrary function andC is a constant.

(3) Let us consider the equation

ut − a(u)uxx = u(1− a(u)) (43)

wherea(u) is a smooth function. In this case the corresponding system takes the form

v1
x + v1

uv
2 = v2

uv
1

v1− a(u)(v2
x + v2

uv
2) = u(1− a(u)) (44)

wherev1 ≡ ut , v2 ≡ ux , v1, v2 are functions of indepedent variablesx andu.

Theorem 3. The system (44) is conditionally invariant with respect to the operator

D = u∂u + v1∂v1 + v2∂v2 (45)

under the side conditionv1 = u.

Theorem 3 is proved by means of a criterion of conditional invariance (see definition 2
[3, 15]). The operator (45) generates the ansatz

ut = uϕ1(x) ux = uϕ2(x)

which reduces system (44) to the system of ordinary differential equations

ϕ′1 = 0 ϕ1 = 1 ϕ′2+ ϕ2
2 = 1. (46)

This sytem is compatible and its general solution has the form

ϕ1 = 1 ϕ2 = C exp(2x)− 1

C exp(2x)+ 1
C = constant.
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Integrating the system

ut = u ux = uC exp(2x)− 1

C exp(2x)+ 1

we obtain the solution of equation (43),

u = A exp(x + t)+ B exp(t − x) (47)

whereA andB are arbitrary constants. The maximal invariance algebra of equation (43) is
the two dimensional algebra with basic elements∂x and∂t . It is obvious that solution (47)
does not correspond to the classical symmetry of equation (43).

(4) We apply this method to the equation

∂2u

∂x2
0

= F
(

∂2u

∂x0∂x1
,
∂2u

∂x2
1

)
(48)

whereF is a smooth function.
One can obtain the Monge–Ampere equation settingF = (∂2u/∂x0∂x1)

2/(∂2u/∂x2
1).

We also recall that the nonlinear wave equation as well as the one-dimensional ideal fluid
equation are mapped into equation (48) [21]. Using the invariance of equation (48) under
the operators∂u, x0∂u, x1∂u, we write it in the form of the following system

∂v1

∂x1
= ∂v2

∂x0

∂v3

∂x0
= ∂v2

∂x1
v1 = F(v2, v3) (49)

where

∂2u

∂x2
0

≡ v1 ∂2u

∂x0∂x1
≡ v2 ∂2u

∂x2
1

≡ v3.

Theorem 4. System (49) is invariant with respect to the continuous group of transformations
with the infinitesimal operator

X = ξ0(v1, v2, v3)∂x0 + ξ1(v1, v2, v3)∂x1 (50)

if ξ0 andξ1 satisfy the system of linear equations

ξ1
1F1+ ξ1

2 − ξ0
1F2− ξ0

3 = 0 ξ0
2F2 = ξ0

3F1+ ξ1
1F2+ ξ1

3 (51)

where

ξka ≡
∂ξk

∂va
Fa ≡ ∂F

∂va+1
k = 0, 1, a = 1, 2, 3.

Thus the invariance algebra of (49) is infinite-dimensional inspite of the fact that maximal
invariance algebra of equation (48) is six-dimensional. The finite transformations

x̃0 = x0+ aξ0 x̃1 = x1+ aξ1 (52)

correspond to the operator (50). Note thatξ0 andξ1 depend on the second-order derivatives
∂2u/∂x2

0, ∂2u/∂x0∂x1, ∂2u/∂x2
1 in terms of the original variables. In the case of Lie–

Bäcklund symmetry one can construct finite transformations in a closed form for point and
contact symmetries only. We can apply the operator (50) to reduce equation (48) to the
system of three ordinary differential equations for three unknown functions in the way used
in the preceeding examples. With the help of transformations (52) new solutions of equation
(48) can also be generated from a known solution. The existence of the infinite-dimensional
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invariance algebra of system (49) probably allows an exact linearization of this system by
means of hodograph transformations

x0 = x0(v
2, v3) x1 = x1(v

2, v3). (53)

Indeed, excludingv1 from (49) we obtain the system

F1v
2
1 + F2v

3
1 = v2

0 v3
0 = v2

1. (54)

In terms of variables (53) this system is written in the form

F1(v
2, v3)

∂x0

∂v3
− F2(v

2, v3)
∂x0

∂v2
= −∂x1

∂v3

∂x1

∂v2
= ∂x0

∂v3
. (55)

If we have a particular solution of the linear system (55) then it is easy to obtain an exact
solution of equation (48). We can also formulate the nonlinear superposition principle for
its solutions.

(5) Let us consider the system of two nonlinear equations

ut = F(ux,wx) wt = 8(ux,wx) (56)

whereF and8 are arbitrary functions. The corresponding system is written in the form

v1
2 = v2

1 v3
2 = v4

1 v1 = F(v2, v4) v3 = 8(v2, v4) (57)

whereut = v1, ux = v2, wt = v3, wx = v4, t ≡ x1, x ≡ x2. System (57) is invariant with
respect to the continuous group of transformations with the infinitesimal operator

X = ξ1(v2, v4)∂x1 + ξ2(v2, v4)∂x2 (58)

if ξ1 andξ2 satisfy the system of linear equations

ξ1
2F4 = ξ1

4F2+ ξ2
4 ξ1

482 = ξ1
284− ξ2

2 (59)

where

ξka ≡
∂ξk

∂va
Fa ≡ ∂F

∂va
8a ≡ ∂8

∂va
k = 1, 2, a = 2, 4.

Inspite of the fact thatξ1 andξ2 depend onv2 andv4, the operator (58) is not the operator
of contact symmetry for the initial system (56).

System (57) can be linearized by means of hodograph transformations

x1 = x1(v
2, v4) x2 = x2(v

2, v4). (60)

Indeed, excludingv1 andv3 from (57) we obtain the system

F2v
2
2 + F4v

4
2 = v2

1 82v
2
2 +84v

4
2 = v4

1.

In terms of variables (60) it is written in the form

F4(v
2, v4)

∂x1

∂v2
− F2(v

2, v4)
∂x1

∂v4
= ∂x2

∂v4

82(v
2, v4)

∂x1

∂v4
−84(v

2, v4)
∂x1

∂v2
= ∂x2

∂v2
. (61)
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(6) Now, we show that the conditional symmetry operator of the form

Q = ξ(t, x, u, v1, v2)∂u + η1(t, x, u, v1, v2)∂v1 + η2(t, x, u, v1, v2)∂v2 (62)

which is admitted by the corresponding system can be used to construct the Bäcklund
transformation for the original equation. In fact, if (62) is the operator ofQ-conditional
symmetry of the corresponding system, then we can construct the ansatz of type

ut = F1(t, x, u, ϕ1, ϕ2) ux = F2(t, x, u, ϕ1, ϕ2) (63)

whereϕ1 andϕ2 are unknown functions depending on two variablest andx, which reduces
original equation to the system of two partial differential equations forϕ1 andϕ2. So, ansatz
(63) maps a solution of the reduced system into a solution of the initial equation and can
be used for constructing B̈acklund transformations. We present the example illustrating the
above considerations.

Let us consider the equation

uxt = [1− k2u2
x ]1/2 sinu. (64)

The corresponding system is written in the form

v1
x + v1

uv
2 = v2

t + v2
uv

1

v2
t + v2

uv
1 =

√
1− k2(v2)2 sinu (65)

wherev1 = ut , v2 = ux , v1, v2 are functions of three independent variablest, x, u. It can
be proved that (65) isQ-conditionally invariant under the operator

Q = ∂u + k cosu∂v1 + k−1
√

1− k2(v2)2∂v2. (66)

Operator (66) generates the ansatz

ux = k−1 sin(u− ϕ1) ut = ϕ2+ k sinu (67)

whereϕ1 andϕ2 are unknown functions of two variablest andx (t andx are invariants of
Q). Ansatz (67) reduces equation (64) to the system

ϕ2x = sinϕ1 ϕ2 = ϕ1t . (68)

From (68) it follows thatϕ1 satisfies the sine–Gordon equation

ϕ1tx = sinϕ1.

Using (68) one can rewrite (67) in the following form

ux = k−1 sin(u− w) ut = wt + k sinu (69)

whereϕ1 = w. Thus, (69) gives the B̈acklund transformation which has been obtained in
[22, 23] in another way. It maps the solution of the sine–Gordon equationwxt = sinw into
a solution of equation (64). Kruskall used this Bäcklund transformation in the discovery of
an infinite sequence of the polynomial-conserved densities for the sine–Gordon equation.

Remark. In [18] Galaktionov proposed the method of ‘nonlinear separation’ in which the
ansatz can be presented as a solution of linear ordinary differential equations [20]. In
the general case the solution defined by the ansatz of type (2) does not satisfy a linear
differential equation. Nevertheless, the Galaktionov ansatz can sometimes be obtained
within the framework of this approach. Let us consider the ansatz [18]

u = w1(t)+ w2(t) cosx (70)
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which reduces the nonlinear heat equation

ut = uxx + u2
x + u2 (71)

to the system of two ordinary differential equations.
The system corresponding to (71) is written in the form

v1
t = v2

uv
2+ (v2)2+ u2 v1

u = v2
t + v2

uv
1. (72)

System (72) is conditionally invariant with respect to the operator

Q = v2∂u + v2(2v1− 2(v2)2− 2u2+ 2u− 1)∂v1 + (v1− (v2)2− u2)∂v2 (73)

under the side condition

ṽ1
t = 2(ṽ1)2+ 2ṽ2

whereṽ1 and ṽ2 are the invariants ofQ: ṽ1 = v1+ v2+ 2uv1− u, ṽ2 = √v2+ 2uv1− u2.
The operator (73) generates the ansatz

ut = ϕ1+ ϕ2(2u+ 1)− u u2
x = ϕ1+ 2ϕ2u− u2 (74)

whereϕ1(t) andϕ2(t) are unknown functions, which reduces equation (71) to the system
of ordinary differential equations

ϕ′1 = 2ϕ1ϕ2− 2ϕ2
2 − 2ϕ1 ϕ′2 = 2ϕ2

2 + ϕ1+ ϕ2. (75)

Having integrated the first equation of (74), one can obtain the ansatz

u(t, x) = ϕ(t)[ψ(t)+ θ(x)]
which is used in [18] for constructing explicit solutions of nonlinear evolution equations by
the ‘nonlinear separation’ method.

It is easy to verify that (70) is the solution of the second equation from (74), provided
thatw2

2 − w2
1 = ϕ1, w1 = ϕ2.

The fact that ansatz (70) reduces (71) to a system of ordinary differential equations is a
straightforward consequence of the invariance of the two-dimensional functional subspace
W2 [19]. The reduction of (71) by the ansatz (74) is guaranteed by the existence of the
symmetry operatorQ of the corresponding system (72).

In addition we note that by using theQ-conditional symmetry operator of the corresponding
system of type (5) and (6) we can also construct the group fibering of equation (3) also.
Thus, we conclude that the suggested approach widens the applicability of the symmetry
method to the construction of solutions of partial differential equations.
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